Acid-Base Equilibria and Solubility Equilibria

Chapter 16

The common ion effect is the shift in equilibrium caused by the addition of a compound having an ion in common with the dissolved substance.

The presence of a common ion suppresses the ionization of a weak acid or a weak base.

Consider mixture of $\mathrm{CH}_{3} \mathrm{COONa}$ (strong electrolyte) and $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid).

Consider mixture of salt NaA and weak acid HA.
$\begin{aligned} & \mathrm{NaA}(s) \circlearrowright \mathrm{Na}^{+}(a q)+\mathrm{A}^{-}(a q) \\ & \mathrm{HA}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})\end{aligned} \quad \mathrm{K}_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$
$\left[\mathrm{H}^{+}\right]=\frac{K_{\mathrm{a}}[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$
Henderson-Hasselbalch
$-\log \left[\mathrm{H}^{+}\right]=-\log K_{a}-\log \frac{[\mathrm{HA}]}{\left[\mathrm{A}^{-}\right]}$ equation
$-\log \left[\mathrm{H}^{+}\right]=-\log K_{a}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\text { [conjugate base] }}{[\text { acid }]}
$$

$$
\mathrm{pH}=\mathrm{p} K_{\mathrm{a}}+\log \frac{\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \quad \mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}
$$ and 0.52 M HCOOK ?

Mixture of weak acid and conjugate base!

Initial (M)

$$
\begin{array}{ccc}
\mathrm{HCOOH}(a q) & \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{HCOO}^{-}(a q) \\
0.30 & 0.00 & 0.52 \\
-x & +x & +x \\
0.30-x & x & 0.52+x
\end{array}
$$

Change (M)
Equilibrium (M)
Common ion effect
$\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}+\log \frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}$
$0.30-x \approx 0.30$
$\mathrm{pH}=3.77+\log \frac{[0.52]}{[0.30]}=4.01$
$\mathrm{HCOOH} \mathrm{p} K_{a}=3.77$

A buffer solution is a solution of:

1. A weak acid or a weak base and
2. The salt of the weak acid or weak base

Both must be present!

A buffer solution has the ability to resist changes in pH upon the addition of small amounts of either acid or base.

Consider an equal molar mixture of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
Add strong acid

$$
\mathrm{H}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}(a q)
$$

Add strong base

$$
\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \longrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}_{(}()
$$

Which of the following are buffer systems? (a) KF/HF
(b) $\mathrm{KBr} / \mathrm{HBr}$, (c) $\mathrm{Na}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}$
(a) KF is a weak acid and F^{-}is its conjugate base
buffer solution
(b) HBr is a strong acid
not a buffer solution
(c) $\mathrm{CO}_{3}{ }^{2-}$ is a weak base and $\mathrm{HCO}_{3}{ }^{-}$is its conjugate acid buffer solution

Calculate the pH of the $0.30 \mathrm{M} \mathrm{NH}_{3} / 0.36 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$ buffer system. What is the pH after the addition of 20.0 mL of 0.050 M NaOH to 80.0 mL of the buffer solution?$\begin{aligned} & \mathrm{NH}_{4}^{+}(\mathrm{aq}) \rightleftarrows \mathrm{H}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \\ & \mathrm{pH}=\mathrm{pK} \mathrm{~K}_{\mathrm{a}}+\log \frac{\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \quad \mathrm{p} K_{a}=9.25 \quad \mathrm{pH}=9.25+\log \frac{[0.30]}{[0.36]}=9.17 \\ & \text { start (moles) } \quad 0.029 \quad 0.001 \\ & \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NH}_{3}(\mathrm{aq}) \\ & \text { end (moles) } \\ & 0.028 \quad 0.0 \\ & \text { final volume }=80.0 \mathrm{~mL}+20.0 \mathrm{~mL}=100 \mathrm{~mL} \\ & {\left[\mathrm{NH}_{4}^{+}\right]=\frac{0.028}{0.10}\left[\mathrm{NH}_{3}\right]=\frac{0.025}{0.10} \quad \mathrm{pH}=9.25+\log \frac{[0.25]}{[0.28]}=9.20} \end{aligned}$			

Solubility Equilibria

$$
\begin{aligned}
& \mathrm{AgCl}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \\
& K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right] \quad K_{s p} \text { is the solubility product constant } \\
& \mathrm{MgF}_{2}(\mathrm{~s}) \rightleftarrows \mathrm{Mg}^{2+}(a q)+2 \mathrm{~F}^{-}(a q) \quad K_{s p}=\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2} \\
& \mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s}) \rightleftarrows 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq}) \quad K_{\text {sp }}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}{ }^{2-}\right] \\
& \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}(\mathrm{~s}) \rightleftarrows 3 \mathrm{Ca}^{2+}(a q)+2 \mathrm{PO}_{4}{ }^{3-}(a q) \quad K_{s p}=\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{PO}_{4}{ }^{3-}\right]^{2}
\end{aligned}
$$

Dissolution of an ionic solid in aqueous solution:

$Q<K_{\text {sp }}$	Unsaturated solution	No precipitate
$Q=K_{\text {sp }}$	Saturated solution	
$Q>K_{\text {sp }}$	Supersaturated solution	Precipitate will form

TABLE 16.2			
Compound	$K_{\text {sp }}$	Compound	$K_{\text {sp }}$
Aluminum hydroxide [$\mathrm{Al}(\mathrm{OH})_{3}$]	1.8×10^{-33}	Lead(II) chromate (PbCrO_{4})	2.0×10^{-14}
Barium carbonate (BaCO_{3})	8.1×10^{-9}	Lead(II) fluoride (PbF_{2})	4.1×10^{-8}
Barium fluoride (BaF_{2})	1.7×10^{-6}	Lead(II) iodide (PbI_{2})	1.4×10^{-8}
Barium sulfate (BaSO_{4})	1.1×10^{-10}	Lead(II) sulfide (PbS)	3.4×10^{-28}
Bismuth sulfide $\left(\mathrm{Bi}_{2} \mathrm{~S}_{3}\right)$	1.6×10^{-72}	Magnesium carbonate $\left(\mathrm{MgCO}_{3}\right)$	4.0×10^{-5}
Cadmium sulfide (CdS)	8.0×10^{-28}	Magnesium hydroxide [$\mathrm{Mg}(\mathrm{OH})_{2}$]	1.2×10^{-11}
Calcium carbonate (CaCO_{3})	8.7×10^{-9}	Manganese(II) sulfide (MnS)	3.0×10^{-14}
Calcium fluoride (CaF_{2})	4.0×10^{-11}	Mercury(I) chloride ($\mathrm{Hg}_{2} \mathrm{Cl}_{2}$)	3.5×10^{-18}
Calcium hydroxide $\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]$	8.0×10^{-6}	Mercury(II) sulfide (HgS)	4.0×10^{-54}
Calcium phosphate [$\left.\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right]$	1.2×10^{-26}	Nickel(II) sulfide (NiS)	1.4×10^{-24}
Chromium(III) hydroxide $\left[\mathrm{Cr}(\mathrm{OH})_{3}\right]$	3.0×10^{-29}	Silver bromide (AgBr)	7.7×10^{-13}
Cobalt(II) sulfide (CoS)	4.0×10^{-21}	Silver carbonate $\left(\mathrm{Ag}_{2} \mathrm{CO}_{3}\right)$	8.1×10^{-12}
Copper(I) bromide (CuBr)	4.2×10^{-8}	Silver chloride (AgCl)	1.6×10^{-10}
Copper(I) iodide (CuI)	5.1×10^{-12}	Silver iodide (AgI)	8.3×10^{-17}
Copper(II) hydroxide $\left[\mathrm{Cu}(\mathrm{OH})_{2}\right]$	2.2×10^{-20}	Silver sulfate $\left(\mathrm{Ag}_{2} \mathrm{SO}_{4}\right)$	1.4×10^{-5}
Copper(II) sulfide (CuS)	6.0×10^{-37}	Silver sulfide ($\mathrm{Ag}_{2} \mathrm{~S}$)	6.0×10^{-51}
Iron(II) hydroxide $\left[\mathrm{Fe}(\mathrm{OH})_{2}\right]$	1.6×10^{-14}	Strontium carbonate (SrCO_{3})	1.6×10^{-9}
Iron(III) hydroxide $\left[\mathrm{Fe}(\mathrm{OH})_{3}\right]$	1.1×10^{-36}	Strontium sulfate (SrSO_{4})	3.8×10^{-7}
Iron(II) sulfide (FeS)	6.0×10^{-19}	Tin(II) sulfide (SnS)	1.0×10^{-26}
Lead(II) carbonate (PbCO_{3})	3.3×10^{-14}	Zinc hydroxide [$\mathrm{Zn}(\mathrm{OH})_{2}$]	1.8×10^{-14}
Lead(II) chloride (PbCl_{2})	2.4×10^{-4}	Zinc sulfide (ZnS)	3.0×10^{-23}

Molar solubility ($\mathrm{mol} / \mathrm{L}$) is the number of moles of solute dissolved in 1 L of a saturated solution.

Solubility (g / L) is the number of grams of solute dissolved in 1 L of a saturated solution.

TABLE 16.3 Relationship Between $K_{\text {sp }}$ and Molar Solubility (s)

Compound	$\boldsymbol{K}_{\text {sp }}$ Expression	Cation	Anion	Relation Between $\boldsymbol{K}_{\text {sp }}$ and \boldsymbol{s}
AgCl	$\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$	s	s	$K_{\text {sp }}=s^{2} ; s=\left(K_{\text {sp }}\right)^{\frac{1}{2}}$
BaSO_{4}	$\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]$	s	s	$K_{\text {sp }}=s^{2} ; s=\left(K_{\text {sp }}\right)^{\frac{1}{2}}$
$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	$\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CO}_{3}^{2-}\right]$	s	$K_{\text {sp }}=4 s^{3} ; s=\mathrm{a} \frac{K_{\text {sp }}}{4} \mathrm{~b}$	
PbF_{2}	$\left[\mathrm{~Pb}^{2+}\right]\left[\mathrm{F}^{-}\right]^{2}$	$2 s$	$K_{\text {sp }}=4 s^{3} ; s=\mathrm{a} \frac{K_{\text {sp }}}{4} \mathrm{~b}$	
$\mathrm{Al}(\mathrm{OH})_{3}$	$\left[\mathrm{Al}^{3+}\right]\left[\mathrm{OH}^{-}\right]^{3}$	s	$3 s$	$K_{\text {sp }}=27 s^{4} ; s=\mathrm{a} \frac{K_{\text {sp }}^{2}}{27} \mathrm{~b}^{\frac{1}{4}}$
$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	$\left[\mathrm{Ca}^{2+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{2}$	$3 s$	$2 s$	$K_{\text {sp }}=108 s^{5} ; s=\mathrm{a} \frac{K_{\text {sp }}}{108} \mathrm{~b}^{\frac{1}{3}}$

What concentration of Ag is required to precipitate ONLY AgBr in a solution that contains both Br^{-}and Cl^{-}at a concentration of 0.02 M ?

AgBr

$$
r(s) \rightleftarrows \mathrm{Ag}^{+}(a q)+\mathrm{Br}^{-}(a q) \quad \begin{aligned}
& K_{s p}=7.7 \times 10^{-13} \\
& \\
& \\
& K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Br}^{-}\right]
\end{aligned}
$$

$$
\left[\mathrm{Ag}^{+}\right]=\frac{K_{s p}}{\left[\mathrm{Br}^{-}\right]}=\frac{7.7 \times 10^{-13}}{0.020}=3.9 \times 10^{-11} \mathrm{M}
$$

$\mathrm{AgCl}(\mathrm{s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq}) \quad K_{s p}=1.6 \times 10^{-10}$
$K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-}\right]$

$$
\left[\mathrm{Ag}^{+}\right]=\frac{K_{s p}}{\left[\mathrm{Cl}^{-}\right]}=\frac{1.6 \times 10^{-10}}{0.020}=8.0 \times 10^{-9} \mathrm{M}
$$

$3.9 \times 10^{-11} \mathrm{M}<\left[\mathrm{Ag}^{+}\right]<8.0 \times 10^{-9} \mathrm{M}$

The Common Ion Effect and Solubility

The presence of a common ion decreases the solubility of the salt.

What is the molar solubility of AgBr in (a) pure water and (b) 0.0010 M NaBr ?
$\mathrm{AgBr}(\mathrm{s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})$

$$
K_{s p}=7.7 \times 10^{-13}
$$

$$
s^{2}=K_{s p}
$$

$$
s=8.8 \times 10^{-7}
$$

$$
\begin{aligned}
& \mathrm{NaBr}(\mathrm{~s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \\
& {[\mathrm{Br}-]=0.0010 \mathrm{M}} \\
& \mathrm{AgBr}(\mathrm{~s}) \rightleftarrows \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \\
& {\left[\mathrm{Ag}^{+}\right]=s} \\
& {[\mathrm{Br}-]=0.0010+s \approx 0.0010} \\
& K_{s p}=0.0010 \times s \\
& s=7.7 \times 10^{-10}
\end{aligned}
$$

